首页> 外文OA文献 >Retrieving the quantitative chemical information at nanoscale from SEM EDX measurements by Machine Learning
【2h】

Retrieving the quantitative chemical information at nanoscale from SEM EDX measurements by Machine Learning

机译:从sEm中检索纳米级的定量化学信息   通过机器学习进行EDX测量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The quantitative composition of metal alloy nanowires on InSb(001)semiconductor surface and gold nanostructures on germanium surface isdetermined by blind source separation (BSS) machine learning (ML) method usingnon negative matrix factorization (NMF) from energy dispersive X-rayspectroscopy (EDX) spectrum image maps measured in a scanning electronmicroscope (SEM). The BSS method blindly decomposes the collected EDX spectrumimage into three source components, which correspond directly to the X-raysignals coming from the supported metal nanostructures, bulk semiconductorsignal and carbon background. The recovered quantitative composition isvalidated by detailed Monte Carlo simulations and is confirmed by separatecross-sectional TEM EDX measurements of the nanostructures. This shows that SEMEDX measurements together with machine learning blind source separationprocessing could be successfully used for the nanostructures quantitativechemical composition determination.
机译:使用能量色散X射线光谱(EDX)的非负矩阵分解(NMF),通过盲源分离(BSS)机器学习(ML)方法确定InSb(001)半导体表面上的金属合金纳米线和锗表面上的金纳米结构的定量组成在扫描电子显微镜(SEM)中测量的光谱图像图。 BSS方法盲目地将收集的EDX光谱图像分解为三个源分量,这些分量直接对应于来自支持的金属纳米结构,体半导体信号和碳背景的X射线信号。通过详细的蒙特卡洛模拟对回收的定量组成进行验证,并通过对纳米结构进行单独的截面TEM EDX测量来确认。这表明SEMEDX测量与机器学习盲源分离处理一起可以成功用于纳米结构定量化学成分测定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号